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The arbitrary trajectory quantization meth@dTQM) is a time dependent approach to quasiclassical quan-
tization based on thapproximatedual relationship that exists between the quantum energy spectra and
classical periodic orbits. It has recently been shown however, that, for polygonal billiards, the periodicity
criterion must be relaxed to include closed almost-peri¢@iP) orbit families in this relationship. In light of
this result, we reinvestigate the ATQM and show that at finite energies, a smoothened quasiclassical kernel
corresponds to the modified formula that includes CAP families whilesthenction kernel corresponding to
the periodic orbit formula is recovered Bs—. Several clarifications are also provided.
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I. INTRODUCTION on classical propagatiofor its quasiclassicdl8] adaptation
where necessayyln case of a polygon, it involves shooting

Semiclassical quantization methods developed over therbitrary trajectories in various directions from a pdicll it
past three decades generally rely on the energy domain ag-— see Fig. 1, left and at each time step, recording the
proach. The spectral density(E) == ,5(E—E,) is thus ex-  (weighted fraction F(t) of trajectories that are in ar
pressed in terms of periodic orbits of the underlying classicaneighborhood of a poind. The peaks in the power spectrum
dynamics and this is commonly referred to as the Gutzwillerof F(t) are then related to the quantum eigenvalues.
trace formuld 1]. The crossover from the time domain to the  Apart from the simplicity, the arbitrary trajectory quanti-
energy domain and the trace formula necessitates several agation method ATQM) (see Ref[6]) is perhaps the only
proximations in the form of stationary phase integrations angemiclassical scheme that has been successful in determining
one of these selects periodic orbits as the sole classical irthe first few quantal energy levels of generic polygonal bil-
gredient. The recipe works well in most cases since closetiards [9]. However, the theory as presented in R,
nonperiodic orbits contribute with a lesser weight and can béeaves a number of questions unanswered. For one, the role
included only as a correction. There are instances howevelf the e neighborhood is unclear. Besides, as the theory uses
when closed nonperiodic orbits contribute with weights com-periodic orbit quantization to relate the peaks in the power
parable to periodic orbits and the “periodicity criterion” spectrum of(t) with the quantum eigenenergies, the role of
must then be relaxed to accommodate tH&r8]. Polygonal CAP trajectories must be clarified. We shall thus reinvesti-
billiards provide such an example and perhaps hold the kegate ATQM from this viewpoint and understand why it
to generic intermittent behavior. In these systems, a slightvorks.
change in the internal angles results in the destruction of The plan of the paper is as follows. In Sec. II, we shall
periodic orbit families thereby giving rise to closed almost-recapitulate the existing work on the arbitrary trajectory
periodic (CAP) families of orbits[4]. Since this is true for quantization method. The modifications that we shall carry
each periodic family in every neighboring polygon, CAP out to account for the inclusion of closed almost-periodic
families actually outnumber periodic families of any given orbits can be found in Sec. Il and this constitutes the main
polygon. Further, they contribute with weights comparable topart of this paper. Finally, a discussion on errors and a sum-
periodic families in the semiclassical trace formula and aremary of our results can be found in Sec. IV.
hence indispensable for semiclassical quantization. This
makes the energy domain approach rather cumbersome to Il. ARBITRARY TRAJECTORY QUANTIZATION:
implement and a time domain approach is thus preferable. A REVIEW

For polygonal billiards, there are two available ap-
proaches in the time domain. The first of these developed bg
Heller and Tomsovig¢5] relies on a semiclassical construc- u
tion of the time dependent propagator to evaluate the auto-

The arbitrary trajectory quantization method relies on a
itable(quasiclassicaladaptation of the classical evolution

correlation  function, C(t)=(y[y(t)) where y(q,t) g
:<q|lp(t»:Encn¢n(q)e_lEnt/ﬁ2J‘Ks.c(qaq,at) #(q',0)dq’". =
Here{¢,}, {E,}, and{c,} are the eigenfunctions, eigenval- o
ues, and expansion coefficients, respectively, while q

Ksc(g,9',t) is the semiclassical propagator constructed us-

ing classical trajectories joining a pair of pointg,§’) at FIG. 1. The arbitrary trajectory quantization recipe. In case of
each timet. A power spectrum of(q,t) thus yields the  the polygon, trajectories with different linear momentum span the
quantum eigenvalues. The method has been successfully aghtire constant energy surface. In case of the circle, this is achieved
plied to the stadium billiard, but to the best of our knowl- by shooting trajectories with different angular momentum. In both
edge, it has not been used for quantizing polygonal billiardscases, théweighted fraction of trajectories in the cell aroungis

The second approadlé,7] is simpler to adopt and relies recorded.
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— fer to the two irreducible circuits on the torus apds the
momentum conjugate to the coordinate
/ On a general two-dimensional invariant surface param-

/
. / R — etrized by, the classical propagator is expressed@s
2
/

']

Et(¢)°¢(©|)=f da’sla—q""(¢)14(a"), (2

whereq refers to the position in the singly connected region
(see Fig. 2andq’!(¢) is the time evolution parametrized by
o ¢ as described above. We denote {by, (t; ¢)}, the eigen-
values ofZ '(¢) and from its multiplicative nature, it follows
FIG. 2. The singly connected region for &nshaped billiard thatAn(t;@):e)‘n(<P)t_ We are interested here in the form of

consisf[s.of fpur copies with edges qpprqpriately iQentifigd. A trajec-}\n(@) and to this end we shall evaluate
tory originating near the 3/2 vertex in 1 is plotted in configuration

space using bold lines and the corresponding unfolded trajectory is
also shown. The latter consists of parallel segments and the trajec- f de Tr LY(¢)= f d<p2 ehn(e)t
tory can be parametrized by the angleéhat it makes for example
with the q; axis.

=J dsoJ dadla—qi(e)]. 3
operator that propagates a density under a flow that we de-
note byqg'. For polygonal billiards, the flow occurs on an The delta function kernel ensures that the only orbits that
invariant surface that is two dimensional and characterize@ontribute are ones that are periodic or close on the invariant
by the two constants of motiofE, ¢}, whereE is the energy  surface after a timé Theq integrations are thus simpler to
and ¢ denotes the second constant. The surface has the tgerform if we transform to a local coordinate system with
pology of a sphere witly (called the genysholes, whereg  one component parallel to the trajectory and the other per-
can be determined from the internal angles of the polygongendicular. ThU§H(qH_qﬁ):Epzr(llv)5(t_er)a wherev
The motion on the invariant surface can alternately bgg the velocity, T, is the period of the orbit, and is the
viewed on a singly connected surface obtained by executingspetition number. Similarly, for an orbit of periad , pa-
29Acuts qnq with edges approprlately identified. N rametrized by the angle gp, 5L(qi_qu): 5o

s a trivial example, consider the rectangular billiard. The - .
singly connected region is a larger rectangle consisting of gop)/|&qL/&qo.|¢-:¢p Where-| aql/a<p|¢:¢p—rlpfor margin-
four copies corresponding to the four directions that a trajec@lly unstable billiards. Putting these results together and not-
tory can have and these can be glued appropriately to form 189 that each periodic orbit occurs in generaNgtdifferent
torus. As a nontrivial example, consider theshaped billiard ~ values ofe, we finally have
of Fig. 2, which is pseudointegrable with its invariant surface "
having,g=2. Alternately, the surface can be represented by f d E An(9)t— E z apNp
a singly connected region in the plane and consists of four P €
copies corresponding to the four possible directions an orbit
can have and these are glued appropriately. A trajectory in ” p
phase space thus consists of parallel segments at an @angle —NZ E |_5(| —rlp), (4)
[10] measured for example with respect to one of the sides. It P
will be useful to note at this point that the same trajectory,ynerel =t and the summation overrefers to all primitive
can also be represented by parallel segments at angles pqiggic orbit families with length,, and occupying an area
—¢, mt+ ¢, and 27— ¢. In general, the number of directions a,. Note that in Eq(4), we have replaceN,, by N since for
for representing a trajectory equals the number of cofies ¢ jong orbitsN,=N. Also, we have neglected the influ-
that constitute the invariant surface. ence of isolated orbits to simplify matters. We shall continue

Before considering the question of quasiclassical quantizy make this approximation through the rest of this paper and
zation, we first introduce the appropriatassicalevolution justify its use at the end.

operator. For integrable systems, this is easily defined as *,’some cases, it is possible to interpret the periodic orbit

sum in Eq.(4) starting with the semiclassicaE(- ) trace

Ll 01702):J d6.d0)5(6,— 6, 5(6,— 651) formula for marginally stable systems:

X ¢(01,05), (1) p(E)=pay,(E) + L

NCES

whered; and 6, are the angular coordinates on the torus and a
P

. . . ” a
evolve in time as 6'=wi(l1,l)t+ 6, Wlth w; X D Z \/_cos(krlp—z—r,up)_ (5)
=dH(l1,12)/d1; andl;=(1/2m)$r p-dq. Herel'; ,i=1,2 re- p =1 vkrlp

016213-2



ARBITRARY TRAJECTORY QUANTIZATION METHOD PHYSICAL REVIEW E63 016213

Herep,,(E) refers to the average density of quantal eigends an exampleand the construction of the evolution operator
states k= E, |, is the length of a primitive periodic orbit is then guided by the nature of the semiclassical trace for-
family, u,=7ny+ v,m/2, n, the number ofphase-altering ~ mula(Eg. 5.

bounces that it suffers at the boundary, agdhe number of The quasiclassicalevolution operator,.,., linking the
caustics encountered by the orbit. Note that in the Neumanglassical eigenvalues to the the desired semiclassical eigen-
case,n,=0 since there is no phase loss on reflection, whilevalues can be defined as

for polygonal billiards,v,=0. For convenience, we have

=1, v=1 and the masm=1/2. Starting with the function EEJ@D)W(Q):f dg’8[q—q'(¢)]
> H(VE e PEn= f dE f(VENe #EX, p(E), (6) xe nOmOTRg(q"), (10
n A n

wherev(t)=v[q''(¢)] andn(t)=n[q''(¢)] count, respec-

where f(x) = V2/7x cosk—m/4) and 0<A<E,, it is pos- tively, the number of caustics arighase alteringreflections

sible to show using Eq(5) that for polygonal billiard§11] ~ €ncountered by the trajectony'( ) in timet. As before, the
multiplicative nature Of[,;c((p) implies that its spectrum is

o of the form{e*(¥)} and it remains to be shown that for the
f de>, eM=27Nby+2aNY, f(VE.), (7)  quasiclassical operator defined in Eg0), {\,} has a one-

" to-one correspondence with the appropriate quantum spec-
m.

. u
where{E,} are the Neumann eigenvalues of the system anér As before, we shall evaluate

b, is a constanf11,12. Thus,(¢)=iE, sin(e) [13]. This
is the central result of Ref6] when the Maslov phases are

zero. f de Tr£;c=fd<p2 ghnlolt
For integrable polygons, Ed7) can in fact be derived "

directly starting from Eg. (1). The eigenfunctions,

{¢hn(6:1,0,)}, on the torus are such that,(6},65) :f dﬁof dg éla—q'(¢)]

=Aq(t) dn(61,6,), whereA (t)=e'*'. On demanding that _ _

&n(61,6,) be a single valued function o#( , 65), it follows X e nMm-ivtm2 (13)

that ¢,(6;,6,) =€ (M%1+"2%) wheren=(n,n,) is a point

on the integer lattice. Thus the eigenvalug (t) The trajectories that contribute are once more periodic due to

the delta function in the kernel. Tleeand ¢ integrations can

_e%(g{litll(ﬂéﬁgenztﬁé)}.reIationship betweefdgSe (@t and be performed along similar lines and we finally have
{E,}, consider a rectangular billiard for which the Hamil- “ 4

tonian is expressed in terms of the actiorls,l, is f deTrLbe=N X > —Lo(—rl e Mpmirvpm2,
H(1,1,)=72(12/L2+1%/L2), whereL,,L, are the lengths p i1ty

of the two sides. With I,=\EL,cos@)/w and I, (12)

= VELssin(g)/, it is easy to see that at a given eneBy  giarting with the functiors,g(VE,|)exp(SE,), it follows
each torus is parametrized by a particular valueoff hus from Eq. (5) that for B—0*

A(t; :eiZthfF[nlcos@p)/LlJrnzsin(gp)/Lz] 8
ltie) ® f deTrLi= Ay)=2aNC+2aNY, g(VE,),
n n
and (13
T ) ) where {E,} now refers to the desired quantum spectrum,
f de>, emw:; fﬁﬂ dgp el VEnsin(e+sun) g(x) = V2/(mx)exp(~ix+m/4) andC is a constant. Since
1% _ixsine)
=272 Jo(VEJD), ) 90)=" fo e " de (14)
n
for largex, it follows that forv =1,
where |=2tJE, tan(u,)=n;L,/(n,L;), and E,
= 7?(n{/L2+n3/L3). On separating oun=(0,0) from the N( @) =i E, sin(@). (15)

rest, restricting the summation to the first quadrant of the

integer lattice, and noting that for a rectanglg=1/4, Eq.  Equation(15) forms the central result of Reff6].

(7) follows. To demonstrate this result, we shall consider a triangle
The classical evolution operator thus serves to determinwith base angless/5,37/10) and evaluate the power spec-

the Neumann spectrum in polygonal billiards. Appropriatetrum, S(k), of the (phase weightedfraction of trajectories

modifications however need to be made for the Dirichletaveraged over 150 cells of radigs-0.03. Thege integration

spectrum or for systems that have causttbe circle billiard is performed using 300 trajectories each of which has a
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' ' T T semiclassical trace formula, an amounéarly equal to the

] periodic orbit contribution off ) provided ww;A ;<\ [3].
Here A ¢, is the angle between the initial and final momen-
. tum of the orbitw; is the transverse extent of the family, and
\ is the de Broglie wavelength. Thus, correspondinguery

40

30 -

Sk 5L _ periodic family ineachof the triangleg TV}, there exists an
almost-periodic family in the triangl& whose contribution
0l i is comparable to that of periodic orbit families in these
neighboring triangles.
t t £ 1 TR NET! The semiclassical trace formula should thus incorporate
0 T ¥ F 0 F PR F P CAP orbits and the modified expression &:
8 10 12 14 16 18 20 22 24 26 28
k
FIG. 3. The power spectrur8(k) for the triangular enclosure p(E)=p, (E)‘*‘E ol
with base length unity. The top set of arrows mark the first ten v i x/8773kli
Dirichlet eigenvalues of the triangle. The bottom set are obtained
from Bogomolny's transfer operator meth¢d4]. Note that the sin(kA 6;w;/2)
nonzero cell sized) corresponds to the hat-function kernel rather Xcosikli—w/4)W, (17)
[ |

than the delta function kernel used so far. For more details, see text.

length 2048<0.025. The result is plotted in Fig. 3. The peak wh(_are_the sum 0\_/_eir runs over closed almost-perioda'md
positions ofS(k) approximate the exact quantum eigenval-pe”Od'lC orbr:t f?m'“ﬁs ?f trgnsll/erse eﬁtelm, lih'sfthﬁ av-b.
ues well. Note however that the cells have a nonzero value di'@9€ length of such a amilyaken as the length of the orbit

€ and the power spectrum depends sensitively on the choi(:%t_the center of the banavhile A6 is the angle between the

of this quantity. In the following section therefore, we shall |p|tial and final momentum of the orbit. Note that at any

develop an appropriate theory that takes into account thfnit€ ki there exists a CAP family for which the de Broglie
nonzeroe requirement. wavelength A>7w;A 6;, so that the family contributes to

the modified trace formula with a weight comparable to that

of periodic families] ©O(1/k*?)].

Ill. ARBITRARY TRAJECTORY QUANTIZATION: The modified trace formulé&q. 17 however fails to re-
MODIFICATIONS late the quantum eigenvalues with the eigenvalue<L of

As pointed out, the existing theory does not require¢he Since itsé function kernel chooses only periodic orbits. The

neighborhood depicted in Fig. 1. All one needs is the expankernel function must therefore be suitably smoothened to
sion of the kernel achieve such a correspondence.

In order that there exists a direct relationship between the
, i s eigenvalues of a quasiclassical opera?l’gg, and the quan-
Kla.q t(ﬁo)]:zn: bn(@) 7 (") eNESEE (16 gy eigenvaluegE,}, the kernel function corresponding to
Lqc must be[16]
where ¢, are the eigenfunctions od’,}qc. The power spec-
1t ~ . .
trum, S(k), of fde K[q,q"'(¢)] then has peaks afE,. In Roc(@0' 1) =Ky(q.q e nO7ir072, (19)
practice, this implies that must tend to zero since the kernel
has a delta function. The results however get worse &s
reduced to zero. A nonzero cell size on the other hand givewhere
satisfactory results but is equivalent to a smoothened kernel

[15]. There is thus a gap in the present understanding and it P ST ot

is necessary to take a fresh look at the theoretical framework. Ks(q,q,,t):sm{k[q” qi ()1} sinfkla, —a. (o)1}
The trouble in effect lies with the semiclassical trace for- alq—qi'(e)]  #la—q]'(e)]

mula [Eq. (5)] which neglects the contributions of closed (19

almost-periodic trajectories. In case of a polygon, these occur
in families with the same symbolic dynamics and across\gte that limg_...K<(q,9",t) = 8[q— q''(¢)]. The subscrips

which the action varies slowly. To see this, consider an aryn s denotes the smoothened kernel. As before, the multipli-
bitrary triangleT. In its immediate neighborhoo@btained cative nature offt () implies that its spectrum is of the
by changing the angles slighjlythere exists an infinity of qcl® P P

triangles{T™}, each with a distinct periodic orbit spectrum form {€*n(¥)%} and we shall now show that for the quasiclas-
but having the same symbol sequeficewhich the sides are sical operator defined in Eq18), {\}} has a one-to-one
visited) for times that depend on the differences in anglescorrespondence with the appropriate quantum spectrum.
Assume now that there exists a periodic orbit corresponding Note that in generau“—qﬁ(go):IiJquA 0i—1=Aqy for

to a sequenceé, for the triangleTW. Then, for all other the ith (CAP or periodi¢ family while q, —q,(¢)=1;¢
triangles in its neighborhood, this sequence contributes to the Aq, so that
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B sin(kAq)) sinkAq,) 10}
f dedqg Ks(q,q,t)—f dedo da, 7Aq, TG, (a)
(20 sl
A few approximations are now in order to keep the deriva-
tion simple. First, we shall replackq in the denominator __6l
by its mean valudat q, =0) so thatAq=I—1; Thus %
w2 sin(kA sin(kA 6,w;/2 :
f d n( qu)zz n(~ ivVi )&((I_Ii)'
~w; /2 mAQ) kA6,
(21) 2t
where 8i(1—1,)=sink(I—1)}[#(1—1;)]. We shall next con- oL ‘ | \f“\ \
siderk finite but sufficiently large so that 0 10 20 | 30 40 50
16 , . . . ; ;
sinkAq,) 1
LA 141 (b)
J de mAd, li @2
121
The q integration needs no approximation and yieJato,
=P, wherelP refers to the length of the orbiprimitive 10
whenA 6;,=0). Finally then, < 3
s
St a; —inym—iv;m/2 6F
de TrEi=2> N Bi&(I-1pe ™M™ (23
1 i 4l
where g;=sinkA6wi/2)/(kA 6;w;/2) and a;=w;IP. For a 2}
polygon, n; is even for both CAP and periodic families, 0 T ]
while »;=0. Thus ak— o, Eq. (23) reduces to Eq(4). As 25 30 35 40 45 50 55 60 65 70
k

before, we have neglected the contribution of isolated orbits
from both the classical and semiclassical trace formulas. FIG. 4. The power spectru(K) of G(t)e*Btz as a function of

The eigenvalues Ottqc can be related to quantum eigen- g is shown for two different sets of points;@’ =q) in (a) and(b),
values using Eqg23) and(17) and we merely state the final respectively. The arrows ife) mark the exact quantum eigenener-

result: gies corresponding to the nine tallest peaks while thogb)imark
the five tallest peaks. The dashed lines are used to mark the tallest
A3(¢)=1\E, sin(¢). (24  peaks in both cases. Heke= 100, 3=0.01 and the length of each

o ] ) . . trajectory is 204&/k. There exist 37 eigenvalues flr 50.
This is no different from our earlier result but in practical

terms, the use of the; smoothened kernel justifies the use @n performing the threeg(,qy,q, ) integrals similarly, it is
the e neighborhood sinck  contributes substantially only in possible to show that
a small neighborhood arourgl the size of which is deter-

mined byk. Note that the correspondence demands that the . a; 1{wA6, 2
quantityk in K be identified withyEay WhersEmax is the f de TrK :Ei r 1_§ 2312, e
maximum energy that one is interested in. TRusso deter-
mines the time increment in the evolution of the kernel. e~ (1-1)%20°

Undoubtedly, several other smoothened kernels are just as Xe—F——, (26)
appropriate. For instance, if one evaluates the fraction of 2mo

trajectories in ane neighborhood ofg, the hat function of . . . .
width e and height 1¢ is the appropriate kernel to use. The Which approximates E¢23) for orbits with A6, small pro-
role of k is then replaced by &/ On the other hand, if one videq lir is identified withk. Thus any smoothened delta
chooses a Gaussian centeredjathe appropriate smooth- function ought to work reasonably well. _
ened kernel is Finally, a few remarks about the neglect of the isolated
periodic orbits are in order. First, these are finite in number
. o Lo af (12202 o-[a, ~a] (¢)]2120? and have a smaller contribution in both tieuasjclassical _
KS(q,q,t)= _ as well as the semiclassical trace formula compared to peri-
s 270’ V27a? odic and almost-periodic families. Then again, diffractive
(25 contributions[17] can be of the same order as isolated peri-
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odic orbit contributions in the semiclassical trace formula.using this method are at best “semiclassical” in nature since
Thus, in order to be able to compare the semiclassical eigetihe modified trace formula, which connects the eigenvalues
values and the eigenvaluesB&c, we have consistently ne- of £, with the quantum eigenvalues, is only approximate as
glected isolated orbits. higher-order correctionNg®(1/k) due to isolated and diffrac-
We provide some numerical results now. We first evalu-tive orbits have been neglected. In cases when the correc-
ate the function G(t)=fd¢ch for the (199r/1011, tions are zerdsuch as in the rectangular or equilateral bil-

. . . liards), the ATQM does give exact results. However, there
317.7/103.) triangle Of. unit bgse length using about 10. 000are examples of other integrable billiar@ich as the circle
trajectories for thep integration. To achieve smoothening,

. ) . ) billiard) when corrections to the semiclassical trace formula
we use the Hanning window function together with a Gaussy e nonzero and the ATQM gives only the EBK eigenvalues
ian damping and find the power spectrurs(k), of

[19].

G(t)efﬂtz. This is the intensity weighted spectrum, There can however be a further source of error in the
Sl a(@)|264(k—k,) (Whereds is a smoothened delta func- approximationN,=N [see the discussion after E@)] es-
tion), for a single pair of pointsd,q’ =q). Thus, the number pecially in nongeneric systems, where a significant fraction
of distinct and unambiguous peaks $(k) depends on the of long periodic orbits access fewer momentum directions

value ofk and| ¢,,(q)|? so that by changing, a different set than the permissible number. However, we believe that in
of peaks may be generatéske Fig. 4 In Fig. 4a), the nine  generic situations, the approximation is fair. o
highest peak locationhose above the dashed ljrere com- Finally, since a comparison of this method with periodic
pared with the exact quantum eigenenergies, while in Figorbit theorylls_lnevngble, it must be reiterated that the
4(b), the highest five are compared. In all cases, the agreelisual” periodic orbit theory neglects closed almost-
ment is good and the slight difference between peak locaPeriodic orbits and hence cannot give correct results in ge-
tions and the exact quantum levels is due to the semiclassicBg"iC situations. The modified periodic orbit thedoy trace
nature of the calculation. formula does include CAP orbits. However, due to difficul-
The intensity weighted spectrum of Fig. 4 thus demon-ties in enumera.ting them, energy d_omain quantization is ex-
strates that arbitrary trajectories can be used to extract infoR€cted to be quite cumbersome while the ATQM scores well
mation about the quantum eigenstates. Can this however fB!€ to its simplicity. There areongenericsituations how-
used as an effective quantization method to determine afver where closed almost-periodic trajectories do not con-
eigenvalues? Figure 3 indicates that this may indeed be po§ibute significantly and this occurs in systems where the
sible. A natural way of achieving this is by integrating the Number of momentum directions accessible is small &ad
intensity weighted spectrum over[18]. In practice, only a IS therefore always “Iarg_e.”_ In such situations, diffraction
few g values(typically 10—20 provide information of about effects assume greater significance and the ATQM may not

80% of the eigenvalues in a given energy range. be as effective. _ _ .
In summary, we have provided a simple algorithm for
IV. DISCUSSION AND CONCLUSIONS determining the intensity weighted semiclassical spectrum of

polygonal billiards and shown that a smoothened delta func-
It is worth recalling the sources of error in the quantiza-tion kernel for the quasiclassical evolution of densities is
tion recipe presented here. The theoretical basis presentedmecessary at finite energies to incorporate the effects of
Secs. Il and Il clearly indicates that the eigenvalues obtainedlosed almost-periodic orbits.
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