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The arbitrary trajectory quantization method~ATQM! is a time dependent approach to quasiclassical quan-
tization based on theapproximatedual relationship that exists between the quantum energy spectra and
classical periodic orbits. It has recently been shown however, that, for polygonal billiards, the periodicity
criterion must be relaxed to include closed almost-periodic~CAP! orbit families in this relationship. In light of
this result, we reinvestigate the ATQM and show that at finite energies, a smoothened quasiclassical kernel
corresponds to the modified formula that includes CAP families while thed function kernel corresponding to
the periodic orbit formula is recovered asE→`. Several clarifications are also provided.
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I. INTRODUCTION

Semiclassical quantization methods developed over
past three decades generally rely on the energy domain
proach. The spectral density,r(E)5(nd(E2En) is thus ex-
pressed in terms of periodic orbits of the underlying class
dynamics and this is commonly referred to as the Gutzwi
trace formula@1#. The crossover from the time domain to th
energy domain and the trace formula necessitates severa
proximations in the form of stationary phase integrations a
one of these selects periodic orbits as the sole classica
gredient. The recipe works well in most cases since clo
nonperiodic orbits contribute with a lesser weight and can
included only as a correction. There are instances howe
when closed nonperiodic orbits contribute with weights co
parable to periodic orbits and the ‘‘periodicity criterion
must then be relaxed to accommodate them@2,3#. Polygonal
billiards provide such an example and perhaps hold the
to generic intermittent behavior. In these systems, a sl
change in the internal angles results in the destruction
periodic orbit families thereby giving rise to closed almo
periodic ~CAP! families of orbits@4#. Since this is true for
each periodic family in every neighboring polygon, CAP
families actually outnumber periodic families of any give
polygon. Further, they contribute with weights comparable
periodic families in the semiclassical trace formula and
hence indispensable for semiclassical quantization. T
makes the energy domain approach rather cumbersom
implement and a time domain approach is thus preferab

For polygonal billiards, there are two available a
proaches in the time domain. The first of these developed
Heller and Tomsovic@5# relies on a semiclassical constru
tion of the time dependent propagator to evaluate the a
correlation function, C(t)5^cuc(t)& where c(q,t)
5^quc(t)&5(ncnfn(q)e2 iEnt/\.*Ks.c(q,q8,t)c(q8,0)dq8.
Here$fn%, $En%, and$cn% are the eigenfunctions, eigenva
ues, and expansion coefficients, respectively, wh
Ks.c(q,q8,t) is the semiclassical propagator constructed
ing classical trajectories joining a pair of points (q,q8) at
each timet. A power spectrum ofc(q,t) thus yields the
quantum eigenvalues. The method has been successfull
plied to the stadium billiard, but to the best of our know
edge, it has not been used for quantizing polygonal billiar

The second approach@6,7# is simpler to adopt and relie
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on classical propagation~or its quasiclassical@8# adaptation
where necessary!. In case of a polygon, it involves shootin
arbitrary trajectories in various directions from a point~call it
q8— see Fig. 1, left! and at each time step, recording th
~weighted! fraction F(t) of trajectories that are in ane
neighborhood of a pointq. The peaks in the power spectru
of F(t) are then related to the quantum eigenvalues.

Apart from the simplicity, the arbitrary trajectory quant
zation method~ATQM! ~see Ref.@6#! is perhaps the only
semiclassical scheme that has been successful in determ
the first few quantal energy levels of generic polygonal b
liards @9#. However, the theory as presented in Ref.@6#,
leaves a number of questions unanswered. For one, the
of thee neighborhood is unclear. Besides, as the theory u
periodic orbit quantization to relate the peaks in the pow
spectrum ofF(t) with the quantum eigenenergies, the role
CAP trajectories must be clarified. We shall thus reinve
gate ATQM from this viewpoint and understand why
works.

The plan of the paper is as follows. In Sec. II, we sh
recapitulate the existing work on the arbitrary trajecto
quantization method. The modifications that we shall ca
out to account for the inclusion of closed almost-period
orbits can be found in Sec. III and this constitutes the m
part of this paper. Finally, a discussion on errors and a s
mary of our results can be found in Sec. IV.

II. ARBITRARY TRAJECTORY QUANTIZATION:
A REVIEW

The arbitrary trajectory quantization method relies on
suitable~quasiclassical! adaptation of the classical evolutio

FIG. 1. The arbitrary trajectory quantization recipe. In case
the polygon, trajectories with different linear momentum span
entire constant energy surface. In case of the circle, this is achie
by shooting trajectories with different angular momentum. In bo
cases, the~weighted! fraction of trajectories in the cell aroundq is
recorded.
©2000 The American Physical Society13-1
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DEBABRATA BISWAS PHYSICAL REVIEW E63 016213
operator that propagates a density under a flow that we
note by qt. For polygonal billiards, the flow occurs on a
invariant surface that is two dimensional and characteri
by the two constants of motion,$E,w%, whereE is the energy
and w denotes the second constant. The surface has th
pology of a sphere withg ~called the genus! holes, whereg
can be determined from the internal angles of the polyg
The motion on the invariant surface can alternately
viewed on a singly connected surface obtained by execu
2g cuts and with edges appropriately identified.

As a trivial example, consider the rectangular billiard. T
singly connected region is a larger rectangle consisting
four copies corresponding to the four directions that a tra
tory can have and these can be glued appropriately to for
torus. As a nontrivial example, consider theL-shaped billiard
of Fig. 2, which is pseudointegrable with its invariant surfa
having,g52. Alternately, the surface can be represented
a singly connected region in the plane and consists of f
copies corresponding to the four possible directions an o
can have and these are glued appropriately. A trajector
phase space thus consists of parallel segments at an anw
@10# measured for example with respect to one of the side
will be useful to note at this point that the same trajecto
can also be represented by parallel segments at anglep
2w, p1w, and 2p2w. In general, the number of direction
for representing a trajectory equals the number of copiesN,
that constitute the invariant surface.

Before considering the question of quasiclassical qua
zation, we first introduce the appropriateclassicalevolution
operator. For integrable systems, this is easily defined a

L t+f~u1 ,u2!5E du18du28d~u12u18
t!d~u22u28

t!

3f~u18 ,u28!, ~1!

whereu1 andu2 are the angular coordinates on the torus a
evolve in time as u i

t5v i(I 1 ,I 2)t1u i with v i

5]H(I 1 ,I 2)/]I i andI i5(1/2p)rG i
p•dq. HereG i ,i 51,2 re-

FIG. 2. The singly connected region for anL-shaped billiard
consists of four copies with edges appropriately identified. A traj
tory originating near the 3p/2 vertex in 1 is plotted in configuration
space using bold lines and the corresponding unfolded trajecto
also shown. The latter consists of parallel segments and the tr
tory can be parametrized by the anglew that it makes for example
with the q1 axis.
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fer to the two irreducible circuits on the torus andp is the
momentum conjugate to the coordinateq.

On a general two-dimensional invariant surface para
etrized byw, the classical propagator is expressed as@6#

L t~w!+f~q!5E dq8d@q2q8t~w!#f~q8!, ~2!

whereq refers to the position in the singly connected regi
~see Fig. 2! andq8t(w) is the time evolution parametrized b
w as described above. We denote by$Ln(t;w)%, the eigen-
values ofL t(w) and from its multiplicative nature, it follows
that Ln(t;w)5eln(w)t. We are interested here in the form o
ln(w) and to this end we shall evaluate

E dw Tr L t~w!5E dw( eln(w)t

5E dwE dq d@q2qt~w!#. ~3!

The delta function kernel ensures that the only orbits t
contribute are ones that are periodic or close on the invar
surface after a timet. Theq integrations are thus simpler t
perform if we transform to a local coordinate system w
one component parallel to the trajectory and the other p
pendicular. Thusd i(qi2qi

t)5(p( r(1/v)d(t2rTp), wherev
is the velocity,Tp is the period of the orbit, andr is the
repetition number. Similarly, for an orbit of periodrTp pa-
rametrized by the angle wp , d'(q'2q

'

rTp)5d(w
2wp)/u]q' /]wuw5wp

whereu]q' /]wuw5wp
5rl p for margin-

ally unstable billiards. Putting these results together and n
ing that each periodic orbit occurs in general atNp different
values ofw, we finally have

E dw( eln(w)t5(
p

(
r 51

`
apNp

rl p
d~ l 2rl p!

.N(
p

(
r 51

`
ap

rl p
d~ l 2rl p!, ~4!

wherel 5tv and the summation overp refers to all primitive
periodic orbit families with lengthl p and occupying an area
ap . Note that in Eq.~4!, we have replacedNp by N since for
most long orbits,Np.N. Also, we have neglected the influ
ence of isolated orbits to simplify matters. We shall contin
to make this approximation through the rest of this paper
justify its use at the end.

In some cases, it is possible to interpret the periodic o
sum in Eq.~4! starting with the semiclassical (E→`) trace
formula for marginally stable systems:

r~E!.rav~E!1
1

A8p3

3(
p

(
r 51

`
ap

Akrl p

cosS krl p2
p

4
2rmpD . ~5!

-

is
c-
3-2
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ARBITRARY TRAJECTORY QUANTIZATION METHOD PHYSICAL REVIEW E63 016213
Hererav(E) refers to the average density of quantal eige
states,k5AE, l p is the length of a primitive periodic orbi
family, mp5pnp1npp/2, np the number of~phase-altering!
bounces that it suffers at the boundary, andnp the number of
caustics encountered by the orbit. Note that in the Neum
case,np50 since there is no phase loss on reflection, wh
for polygonal billiards,np50. For convenience, we have\
51, v51 and the massm51/2. Starting with the function

(
n

f ~AEnl !e2bEn5E
D

`

dE f~AEl !e2bE(
n

r~E!, ~6!

where f (x)5A2/px cos(x2p/4) and 0,D,E0, it is pos-
sible to show using Eq.~5! that for polygonal billiards@11#

E dw( eln(w)t.2pNb012pN(
n

f ~AEnl !, ~7!

where$En% are the Neumann eigenvalues of the system
b0 is a constant@11,12#. Thusln(w)5 iAEn sin(w) @13#. This
is the central result of Ref.@6# when the Maslov phases ar
zero.

For integrable polygons, Eq.~7! can in fact be derived
directly starting from Eq. ~1!. The eigenfunctions
$fn(u1 ,u2)%, on the torus are such thatfn(u1

t ,u2
t )

5Ln(t)fn(u1 ,u2), whereLn(t)5eiant. On demanding tha
fn(u1 ,u2) be a single valued function of (u1 ,u2), it follows
that fn(u1 ,u2)5ei (n1u11n2u2), wheren5(n1 ,n2) is a point
on the integer lattice. Thus the eigenvalue,Ln(t)
5exp$it(n1v11n2v2)%.

To illustrate the relationship between*dw(eln(w)t and
$En%, consider a rectangular billiard for which the Ham
tonian is expressed in terms of the actions,I 1 ,I 2 is
H(I 1 ,I 2)5p2(I 1

2/L1
21I 2

2/L2
2), whereL1 ,L2 are the lengths

of the two sides. With I 15AEL1cos(w)/p and I 2

5AEL2sin(w)/p, it is easy to see that at a given energyE,
each torus is parametrized by a particular value ofw. Thus

Ln~ t;w!5ei2ptAE[n1cos(w)/L11n2sin(w)/L2] ~8!

and

E dw( eln(w)t5(
n
E

2p2mn

p2mn
dw eil AEnsin(w1mn)

52p(
n

J0~AEnl !, ~9!

where l 52tAE, tan(mn)5n1L2 /(n2L1), and En

5p2(n1
2/L1

21n2
2/L2

2). On separating outn5(0,0) from the
rest, restricting the summation to the first quadrant of
integer lattice, and noting that for a rectangleb051/4, Eq.
~7! follows.

The classical evolution operator thus serves to determ
the Neumann spectrum in polygonal billiards. Appropria
modifications however need to be made for the Dirich
spectrum or for systems that have caustics~the circle billiard
01621
-

n
e

d

e

e

t

is an example! and the construction of the evolution operat
is then guided by the nature of the semiclassical trace
mula ~Eq. 5!.

The quasiclassicalevolution operator,Lqc , linking the
classical eigenvalues to the the desired semiclassical ei
values can be defined as

L qc
t ~w!+f~q!5E dq8d@q2q8t~w!#

3e2 in(t)p2 in(t)p/2f~q8!, ~10!

wheren(t)5n@q8t(w)# andn(t)5n@q8t(w)# count, respec-
tively, the number of caustics and~phase altering! reflections
encountered by the trajectoryq8t(w) in time t. As before, the
multiplicative nature ofL qc

t (w) implies that its spectrum is
of the form$eln(w)t% and it remains to be shown that for th
quasiclassical operator defined in Eq.~10!, $ln% has a one-
to-one correspondence with the appropriate quantum s
trum.

As before, we shall evaluate

E dw Tr L qc
t 5E

n
dw( eln(w)t

5E dwE dq d@q2qt~w!#

3e2 in(t)p2 in(t)p/2. ~11!

The trajectories that contribute are once more periodic du
the delta function in the kernel. Theq andw integrations can
be performed along similar lines and we finally have

E dw Tr L qc
t .N (

p
(
r 51

`
ap

rl p
d~ l 2rl p!e2 irn pp2 ir npp/2.

~12!

Starting with the function(ng(AEnl )exp(2bEn), it follows
from Eq. ~5! that for b→01,

E dw Tr L qc
t 5(

n
Ln~ t !.2pNC12pN(

n
g~AEnl !,

~13!

where $En% now refers to the desired quantum spectru
g(x)5A2/(px)exp(2ix1p/4) andC is a constant. Since

g~x!.
1

pE0

2p

e2 ix sin(w)dw ~14!

for largex, it follows that forv51,

ln~w!5 iAEn sin~w!. ~15!

Equation~15! forms the central result of Ref.@6#.
To demonstrate this result, we shall consider a trian

with base angles (p/5,3p/10) and evaluate the power spe
trum, S(k), of the ~phase weighted! fraction of trajectories
averaged over 150 cells of radiuse50.03. Thew integration
is performed using 300 trajectories each of which has
3-3
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DEBABRATA BISWAS PHYSICAL REVIEW E63 016213
length 204830.025. The result is plotted in Fig. 3. The pe
positions ofS(k) approximate the exact quantum eigenv
ues well. Note however that the cells have a nonzero valu
e and the power spectrum depends sensitively on the ch
of this quantity. In the following section therefore, we sh
develop an appropriate theory that takes into account
nonzeroe requirement.

III. ARBITRARY TRAJECTORY QUANTIZATION:
MODIFICATIONS

As pointed out, the existing theory does not require the
neighborhood depicted in Fig. 1. All one needs is the exp
sion of the kernel

K@q,q8t~w!#5(
n

fn~q!fn* ~q8!eiAEnsin(w)t, ~16!

wherefn are the eigenfunctions ofL qc
t . The power spec-

trum, S(k), of *dw K@q,q8t(w)# then has peaks atAEn. In
practice, this implies thate must tend to zero since the kern
has a delta function. The results however get worse ase is
reduced to zero. A nonzero cell size on the other hand g
satisfactory results but is equivalent to a smoothened ke
@15#. There is thus a gap in the present understanding an
is necessary to take a fresh look at the theoretical framew

The trouble in effect lies with the semiclassical trace f
mula @Eq. ~5!# which neglects the contributions of close
almost-periodic trajectories. In case of a polygon, these oc
in families with the same symbolic dynamics and acro
which the action varies slowly. To see this, consider an
bitrary triangleT. In its immediate neighborhood~obtained
by changing the angles slightly!, there exists an infinity of
triangles$T( i )%, each with a distinct periodic orbit spectrum
but having the same symbol sequence~in which the sides are
visited! for times that depend on the differences in angl
Assume now that there exists a periodic orbit correspond
to a sequenceSk for the triangleT( j ). Then, for all other
triangles in its neighborhood, this sequence contributes to

FIG. 3. The power spectrumS(k) for the triangular enclosure
with base length unity. The top set of arrows mark the first
Dirichlet eigenvalues of the triangle. The bottom set are obtai
from Bogomolny’s transfer operator method@14#. Note that the
nonzero cell size (e) corresponds to the hat-function kernel rath
than the delta function kernel used so far. For more details, see
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semiclassical trace formula, an amount~nearly! equal to the
periodic orbit contribution ofT( j ) providedpwiDu i!l @3#.
HereDu i is the angle between the initial and final mome
tum of the orbit,wi is the transverse extent of the family, an
l is the de Broglie wavelength. Thus, corresponding toevery
periodic family ineachof the triangles$T( i )%, there exists an
almost-periodic family in the triangleT whose contribution
is comparable to that of periodic orbit families in the
neighboring triangles.

The semiclassical trace formula should thus incorpor
CAP orbits and the modified expression is@3#:

r~E!.rav~E!1(
i

ai

A8p3kl i

3cos~kl i2p/4!
sin~kDu iwi /2!

kDu iwi /2
, ~17!

where the sum overi runs over closed almost-periodicand
periodic orbit families of transverse extentwi , l i is the av-
erage length of such a family~taken as the length of the orb
at the center of the band! while Du i is the angle between th
initial and final momentum of the orbit. Note that at an
finite k, there exists a CAP family for which the de Brogl
wavelength,l@pwiDu i , so that the family contributes to
the modified trace formula with a weight comparable to th
of periodic families@O(1/k1/2)#.

The modified trace formula~Eq. 17! however fails to re-
late the quantum eigenvalues with the eigenvalues ofLqc
since itsd function kernel chooses only periodic orbits. Th
kernel function must therefore be suitably smoothened
achieve such a correspondence.

In order that there exists a direct relationship between
eigenvalues of a quasiclassical operatorL̃qc , and the quan-
tum eigenvalues$En%, the kernel function corresponding t
L̃qc must be@16#

K̃qc~q,q8,t !5Ks~q,q8,t !e2 in(t)p2 in(t)p/2, ~18!

where

Ks~q,q8,t !5
sin$k̃@qi2qi8

t~w!#%

p@qi2qi8
t~w!#

sin$k̃@q'2q'8
t~w!#%

p@q'2q'8
t~w!#

.

~19!

Note that limk̃→`Ks(q,q8,t)5d@q2q8t(w)#. The subscripts
thus denotes the smoothened kernel. As before, the mult
cative nature ofL̃qc

t (w) implies that its spectrum is of the

form $eln
s(w)t% and we shall now show that for the quasicla

sical operator defined in Eq.~18!, $ln
s% has a one-to-one

correspondence with the appropriate quantum spectrum.
Note that in general,qi2qi

t(w)5 l i1q'Du i2 l 5Dqi for
the i th ~CAP or periodic! family while q'2q'

t(w)5 l iw
5Dq' so that

n
d

xt.
3-4
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ARBITRARY TRAJECTORY QUANTIZATION METHOD PHYSICAL REVIEW E63 016213
E dw dq Ks~q,q,t !5E dw dqi dq'

sin~ k̃Dqi!

pDqi

sin~ k̃Dq'!

pDq'

.

~20!

A few approximations are now in order to keep the deriv
tion simple. First, we shall replaceDqi in the denominator
by its mean value~at q'50) so thatDqi. l 2 l i Thus

E
2wi /2

wi /2

dq'

sin~ k̃Dqi!

pDqi
.2

sin~ k̃Du iwi /2!

k̃Du i

d k̃~ l 2 l i !,

~21!

where d k̃( l 2 l i)5sin@k̃(l2li)#/@p(l2li)#. We shall next con-
sider k̃ finite but sufficiently large so that

E dw
sin~ k̃Dq'!

pDq'

.
1

l i
. ~22!

The qi integration needs no approximation and yields*dqi
5 l i

p , where l i
p refers to the length of the orbit~primitive

whenDu i50). Finally then,

E dw Tr L̃qc
t .(

i
N

ai

l i
b id k̃~ l 2 l i !e

2 inip2 in ip/2, ~23!

where b i5sin(k̃Duiwi/2)/(k̃Du iwi /2) and ai5wil i
p . For a

polygon, ni is even for both CAP and periodic families
while n i50. Thus ask̃→`, Eq. ~23! reduces to Eq.~4!. As
before, we have neglected the contribution of isolated or
from both the classical and semiclassical trace formulas.

The eigenvalues ofL̃qc
t can be related to quantum eige

values using Eqs.~23! and~17! and we merely state the fina
result:

ln
s~w!5ıAEn sin~w!. ~24!

This is no different from our earlier result but in practic
terms, the use of the smoothened kernel justifies the us
thee neighborhood sinceKs contributes substantially only in
a small neighborhood aroundq, the size of which is deter
mined byk̃. Note that the correspondence demands that
quantityk̃ in Ks be identified withAEmax, whereEmax is the
maximum energy that one is interested in. Thusk̃ also deter-
mines the time increment in the evolution of the kernel.

Undoubtedly, several other smoothened kernels are ju
appropriate. For instance, if one evaluates the fraction
trajectories in ane neighborhood ofq, the hat function of
width e and height 1/e is the appropriate kernel to use. Th
role of k̃ is then replaced by 1/e. On the other hand, if one
chooses a Gaussian centered atq, the appropriate smooth
ened kernel is

Ks
G~q,q8,t !5

e2[qi2qi8
t(w)] 2/2s2

A2ps2

e2[q'2q'8
t(w)] 2/2s2

A2ps2
.

~25!
01621
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On performing the three (w,qi ,q') integrals similarly, it is
possible to show that

E dw Tr Ks
G5(

i

ai

l i
H 12

1

3 S wiDu i

23/2s
D 2

1•••J
3

e2( l 2 l i )
2/2s2

A2ps2
, ~26!

which approximates Eq.~23! for orbits with Du i small pro-
vided 1/s is identified with k̃. Thus any smoothened delt
function ought to work reasonably well.

Finally, a few remarks about the neglect of the isolat
periodic orbits are in order. First, these are finite in num
and have a smaller contribution in both the~quasi!classical
as well as the semiclassical trace formula compared to p
odic and almost-periodic families. Then again, diffracti
contributions@17# can be of the same order as isolated pe

FIG. 4. The power spectrumS(k) of G(t)e2bt2 as a function of
k is shown for two different sets of points (q,q85q) in ~a! and~b!,
respectively. The arrows in~a! mark the exact quantum eigenene
gies corresponding to the nine tallest peaks while those in~b! mark
the five tallest peaks. The dashed lines are used to mark the ta

peaks in both cases. Herek̃5100, b50.01 and the length of each

trajectory is 2048p/ k̃. There exist 37 eigenvalues fork,50.
3-5
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DEBABRATA BISWAS PHYSICAL REVIEW E63 016213
odic orbit contributions in the semiclassical trace formul
Thus, in order to be able to compare the semiclassical eig
values and the eigenvalues ofL̃qc , we have consistently ne-
glected isolated orbits.

We provide some numerical results now. We first eval
ate the function G(t)5*dw K̃qc for the (199p/1011,
31p/103) triangle of unit base length using about 10 00
trajectories for thew integration. To achieve smoothening
we use the Hanning window function together with a Gaus
ian damping and find the power spectrum,S(k), of
G(t)e2bt2. This is the intensity weighted spectrum
(nufn(q)u2ds(k2kn) ~whereds is a smoothened delta func
tion!, for a single pair of points (q,q85q). Thus, the number
of distinct and unambiguous peaks inS(k) depends on the
value ofk̃ andufn(q)u2 so that by changingq, a different set
of peaks may be generated~see Fig. 4!. In Fig. 4~a!, the nine
highest peak locations~those above the dashed line! are com-
pared with the exact quantum eigenenergies, while in F
4~b!, the highest five are compared. In all cases, the agr
ment is good and the slight difference between peak lo
tions and the exact quantum levels is due to the semiclass
nature of the calculation.

The intensity weighted spectrum of Fig. 4 thus demo
strates that arbitrary trajectories can be used to extract in
mation about the quantum eigenstates. Can this howeve
used as an effective quantization method to determine
eigenvalues? Figure 3 indicates that this may indeed be p
sible. A natural way of achieving this is by integrating th
intensity weighted spectrum overq @18#. In practice, only a
few q values~typically 10–20! provide information of about
80% of the eigenvalues in a given energy range.

IV. DISCUSSION AND CONCLUSIONS

It is worth recalling the sources of error in the quantiz
tion recipe presented here. The theoretical basis presente
Secs. II and III clearly indicates that the eigenvalues obtain
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using this method are at best ‘‘semiclassical’’ in nature sin
the modified trace formula, which connects the eigenval
of L̃qc with the quantum eigenvalues, is only approximate
higher-order corrections@O(1/k) due to isolated and diffrac
tive orbits# have been neglected. In cases when the cor
tions are zero~such as in the rectangular or equilateral b
liards!, the ATQM does give exact results. However, the
are examples of other integrable billiards~such as the circle
billiard! when corrections to the semiclassical trace form
are nonzero and the ATQM gives only the EBK eigenvalu
@19#.

There can however be a further source of error in
approximationNp.N @see the discussion after Eq.~4!# es-
pecially in nongeneric systems, where a significant fract
of long periodic orbits access fewer momentum directio
than the permissible number. However, we believe tha
generic situations, the approximation is fair.

Finally, since a comparison of this method with period
orbit theory is inevitable, it must be reiterated that t
‘‘usual’’ periodic orbit theory neglects closed almos
periodic orbits and hence cannot give correct results in
neric situations. The modified periodic orbit theory~or trace
formula! does include CAP orbits. However, due to difficu
ties in enumerating them, energy domain quantization is
pected to be quite cumbersome while the ATQM scores w
due to its simplicity. There arenongenericsituations how-
ever where closed almost-periodic trajectories do not c
tribute significantly and this occurs in systems where
number of momentum directions accessible is small andDu i
is therefore always ‘‘large.’’ In such situations, diffractio
effects assume greater significance and the ATQM may
be as effective.

In summary, we have provided a simple algorithm f
determining the intensity weighted semiclassical spectrum
polygonal billiards and shown that a smoothened delta fu
tion kernel for the quasiclassical evolution of densities
necessary at finite energies to incorporate the effects
closed almost-periodic orbits.
s
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